3.4.68 \(\int \frac {x^{-1+m} (2 a m+b (-1+2 m) x)}{2 (a+b x)^{3/2}} \, dx\)

Optimal. Leaf size=13 \[ \frac {x^m}{\sqrt {a+b x}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 74} \begin {gather*} \frac {x^m}{\sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^(-1 + m)*(2*a*m + b*(-1 + 2*m)*x))/(2*(a + b*x)^(3/2)),x]

[Out]

x^m/Sqrt[a + b*x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 74

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] &
& EqQ[a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]

Rubi steps

\begin {align*} \int \frac {x^{-1+m} (2 a m+b (-1+2 m) x)}{2 (a+b x)^{3/2}} \, dx &=\frac {1}{2} \int \frac {x^{-1+m} (2 a m+b (-1+2 m) x)}{(a+b x)^{3/2}} \, dx\\ &=\frac {x^m}{\sqrt {a+b x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 13, normalized size = 1.00 \begin {gather*} \frac {x^m}{\sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^(-1 + m)*(2*a*m + b*(-1 + 2*m)*x))/(2*(a + b*x)^(3/2)),x]

[Out]

x^m/Sqrt[a + b*x]

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.25, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{-1+m} (2 a m+b (-1+2 m) x)}{2 (a+b x)^{3/2}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(x^(-1 + m)*(2*a*m + b*(-1 + 2*m)*x))/(2*(a + b*x)^(3/2)),x]

[Out]

Defer[IntegrateAlgebraic][(x^(-1 + m)*(2*a*m + b*(-1 + 2*m)*x))/(2*(a + b*x)^(3/2)), x]

________________________________________________________________________________________

fricas [A]  time = 0.91, size = 14, normalized size = 1.08 \begin {gather*} \frac {x x^{m - 1}}{\sqrt {b x + a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*x^(-1+m)*(2*a*m+b*(-1+2*m)*x)/(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

x*x^(m - 1)/sqrt(b*x + a)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (b {\left (2 \, m - 1\right )} x + 2 \, a m\right )} x^{m - 1}}{2 \, {\left (b x + a\right )}^{\frac {3}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*x^(-1+m)*(2*a*m+b*(-1+2*m)*x)/(b*x+a)^(3/2),x, algorithm="giac")

[Out]

integrate(1/2*(b*(2*m - 1)*x + 2*a*m)*x^(m - 1)/(b*x + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 12, normalized size = 0.92 \begin {gather*} \frac {x^{m}}{\sqrt {b x +a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*x^(-1+m)*(2*a*m+b*(-1+2*m)*x)/(b*x+a)^(3/2),x)

[Out]

x^m/(b*x+a)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.87, size = 11, normalized size = 0.85 \begin {gather*} \frac {x^{m}}{\sqrt {b x + a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*x^(-1+m)*(2*a*m+b*(-1+2*m)*x)/(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

x^m/sqrt(b*x + a)

________________________________________________________________________________________

mupad [B]  time = 0.41, size = 11, normalized size = 0.85 \begin {gather*} \frac {x^m}{\sqrt {a+b\,x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^(m - 1)*(2*a*m + b*x*(2*m - 1)))/(2*(a + b*x)^(3/2)),x)

[Out]

x^m/(a + b*x)^(1/2)

________________________________________________________________________________________

sympy [C]  time = 84.07, size = 78, normalized size = 6.00 \begin {gather*} \frac {m x^{m} \Gamma \relax (m) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, m \\ m + 1 \end {matrix}\middle | {\frac {b x e^{i \pi }}{a}} \right )}}{\sqrt {a} \Gamma \left (m + 1\right )} + \frac {b x x^{m} \left (2 m - 1\right ) \Gamma \left (m + 1\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, m + 1 \\ m + 2 \end {matrix}\middle | {\frac {b x e^{i \pi }}{a}} \right )}}{2 a^{\frac {3}{2}} \Gamma \left (m + 2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*x**(-1+m)*(2*a*m+b*(-1+2*m)*x)/(b*x+a)**(3/2),x)

[Out]

m*x**m*gamma(m)*hyper((3/2, m), (m + 1,), b*x*exp_polar(I*pi)/a)/(sqrt(a)*gamma(m + 1)) + b*x*x**m*(2*m - 1)*g
amma(m + 1)*hyper((3/2, m + 1), (m + 2,), b*x*exp_polar(I*pi)/a)/(2*a**(3/2)*gamma(m + 2))

________________________________________________________________________________________